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Localization of the Lesions in MR Images
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Background: The usefulness of 3D deep learning-based classification of breast cancer and malignancy localization from MRI has
been reported. This work can potentially be very useful in the clinical domain and aid radiologists in breast cancer diagnosis.
Purpose: To evaluate the efficacy of 3D deep convolutional neural network (CNN) for diagnosing breast cancer and local-
izing the lesions at dynamic contrast enhanced (DCE) MRI data in a weakly supervised manner.
Study Type: Retrospective study.
Subjects: A total of 1537 female study cases (mean age 47.5 years �11.8) were collected from March 2013 to December
2016. All the cases had labels of the pathology results as well as BI-RADS categories assessed by radiologists.
Field Strength/Sequence: 1.5 T dynamic contrast-enhanced MRI.
Assessment: Deep 3D densely connected networks were trained under image-level supervision to automatically classify
the images and localize the lesions. The dataset was randomly divided into training (1073), validation (157), and testing
(307) subsets.
Statistical Tests: Accuracy, sensitivity, specificity, area under receiver operating characteristic curve (ROC), and the
McNemar test for breast cancer classification. Dice similarity for breast cancer localization.
Results: The final algorithm performance for breast cancer diagnosis showed 83.7% (257 out of 307) accuracy (95% confidence
interval [CI]: 79.1%, 87.4%), 90.8% (187 out of 206) sensitivity (95% CI: 80.6%, 94.1%), 69.3% (70 out of 101) specificity (95% CI:
59.7%, 77.5%), with the area under the curve ROC of 0.859. The weakly supervised cancer detection showed an overall Dice
distance of 0.501 � 0.274.
Data Conclusion: 3D CNNs demonstrated high accuracy for diagnosing breast cancer. The weakly supervised learning
method showed promise for localizing lesions in volumetric radiology images with only image-level labels.
Level of Evidence: 4
Technical Efficacy: Stage 1
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Breast cancer is the most common malignancy affecting
women worldwide,1 and early diagnosis of breast cancer as

well as localizing the lesions are essential for successful treat-
ment planning. While mammography is widely used for early
screening of breast cancer in current clinical practice, breast
magnetic resonance imaging (MRI) is the imaging modality
with the highest sensitivity to diagnose breast cancer.2 In

addition, the MRI scan has also been recommended for screen-
ing high-risk populations.3 Particularly, dynamic contrast-
enhanced (DCE) MRI can provide accurate information on
the location, size, and volume of the lesions, and has become
the first-line method for assessment of tumors.4,5

The MRI lexicon in the Breast Imaging-Reporting and
Data System (BI-RADS) atlas6 provides a standardized language
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that allows radiologists to communicate significant findings. For
breast cancer, MRI BI-RADS is used to characterize breast lesions
based on the shape, margin, internal enhancement characteristics,
as well as nonmass enhancement, with some certain descriptors
indicating malignancy, e.g., an irregular mass margin, the seg-
mental distribution, the clustered ring, etc. Clinically, radiologists
grade the BI-RADS categories into six levels, from level-1 to level-
6, indicating that the patient is negative, benign, probably benign,
suspicious, highly suggestive of malignancy, and biopsy-proven
malignancy, respectively.6 However, the BI-RADS category
assessment suffers from the limitation of interobserver variance
and often subjectively relies on the radiologist’s experience.7

Automatic methods can help to reduce the inter-
observer variance and improve reproducibility. However, it
is challenging to automatically identify and localize breast
cancer based on images, given that the tumors have variable
sizes, shapes, and locations.8 In addition, there exist many
other abnormalities in the images, such as mastitis, granu-
loma, and adenopathy, which also have atypical appearances
but should be differentiated from cancer. In recent years,
deep learning has been emerging as a technique for image
classification and object localization tasks, by taking
advantage of its outstanding feature representation capabil-
ity.9 Convolutional neural network (CNN) models have
been successfully applied to a wide range of radiology
applications, including automatic image classification,10,11

detection,12,13 and segmentation14,15 of lesions. For classifica-
tion tasks, the CNNs take the raw image data as input and extract
the features by a hierarchy of layers to learn discriminative pat-
terns. The models are required to predict likelihood according to
the cancerous and noncancerous ground truth given by biopsy or
surgery. In other words, they are supervised by the pathological
ground truth of the case.

Based on the learned features of the network, we can
infer locations for a region of interest (ROI) with high activa-
tions, i.e., neuron outputs, by means of a weakly supervised
method. Specifically, we used only an image-level label, i.e.,
whether an MRI was malignant or benign, to accomplish the
malignant lesion localizing task. Such methods have been
studied for 2D medical images such as chest x-ray,10 fetal
ultrasound,16 and multilesion computed tomography (CT).17

Compared with 2D methods, 3D weakly supervised approaches
have not been well studied yet.

The objective of this study was to develop 3D deep learn-
ing models identifying cancer from noncancer as well as to local-
ize cancers in a weakly supervised manner based on DCE-MRI.

Materials and Methods
This retrospective study was approved by our Institutional
Review Board and the requirement for written informed con-
sent was waived.

Dataset
The cohort of the study was obtained by an evaluation of our institu-
tional medical records from March 2013 to December 2016. Inclusion
criteria were: 1) Images were scanned under the same MR protocol. 2)
The lesion had complete pathology results (biopsy or surgery); except
that three lesions were considered benign after 3 years follow-up. 3)
Imaging reports had definite BI-RADS category diagnosed by two
breast radiologists with 12-year experience and a senior radiologist with
15-year experience, who was consulted in case of disagreement. 4)
Lesions were a) solitary in one breast or b) in both breasts with the

TABLE 1. Lesion Types and Numbers

Lesion type Number

Malignant Invasive cancer 903

Ductal carcinoma in situ 83

Mucinous adenocarcinoma 10

Papillary carcinoma 10

Basal cell carcinoma 7

Paget’s disease 4

Metaplastic cancer 4

Malignant phyllodes tumor 3

Lymphoma 2

Lobular carcinoma in situ 1

Interstitial stromal sarcoma 1

Mixed tubular carcinoma 1

Myoepithelial carcinoma 1

Eosinophil infiltration 1

Medullary carcinoma 1

Spindle cell tumor with
carcinogenesis

1

Benign Fibroadenomas 233

Adenosis 102

Papilloma 62

Inflammation 57

Hyperplasia 49

Phyllodes tumor 6

Cyst 3

Duct dilatation 2

Hamartoma 1

Great sweat gland metaplasia 1

Spindle cell tumor 1

Lipoma 1
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same BI-RADS and pathological results. Exclusion criteria were: Nor-
mal or typical background parenchyma enhancement (BPE) in bilateral
breasts was eliminated. Table 1 lists the details of lesions including the
types and the corresponding amount.

Breast MRI was conducted with a 1.5T system (Magnetom
Espree Pink; Siemens, Erlangen, Germany), equipped with an eight-
channel breast coil. Patients were examined in the prone position,
with both breasts positioned in the coil cavity. Conventional plain
scans were carried out using the following parameters: axial T1WI
3D non-fatsuppressed (repetition time / echo time [TR/TE], 8.7/4.7 msec;
matrix 896 × 896; slice thickness, 1.1 mm).

DCE-MRI used a 3D fat-suppressed volumetric interpolated
breath-hold examination sequence before and six times after bolus
injection of gadopentetate dimeglumine (0.1 mmol/kg; Magnevist;
Bayer, Berlin, Germany) at 2 mL/s followed by flushing with 20-mL
physiological (0.9%) saline using an automatic injector. Both breasts
were examined for 7.5 min in the axisal plane. Parameters of DCE-
MRI were: TR/TE, 4.53/1.66 msec; matrix 384 × 384; slice thick-
ness, 1.1 mm. Images of each phase were subtracted automatically.
Detailed protocols and imaging parameters are shown in Table 2.

We used a breast MRI dataset of 1537 female study cases (mean
age 47.5 � 11.8 years). There were 1031 positive cases confirmed
with breast cancer. In this study, we randomly divided this dataset into
training (1073 cases), validation (157 cases), and testing (307 cases)

subsets (Table 3). The deep learning models were then trained with
DCE-MRI subtraction images and supervised by pathological labels.

Data Preprocessing for Breast Segmentation
We used the aforementioned imaging sequence of T1-weighted
nonfat-suppressed MRI to generate 3D masks of the breast area. Spe-
cifically, we took 2D slices of the MRI and applied Frangi et al’s
approach18 to obtain the breast–air boundary, the pectoralis muscle
boundary, as well as the boundaries between breast glands and fat.
Next, we employed a series of morphological image processing
methods, including thresholding of the filtered slice, connected com-
ponent analysis, and hole-filling to obtain 2D binary masks for the
breast region. Then we stacked the 2D masks of all the slices and
obtained a 3D breast segmentation mask of the volumetric data. Next,
we employed a 3D Gaussian filter (standard deviation 20) to smooth
the breast mask. In this way we obtained the bounding-box that cov-
ered the whole breast area. An illustration of the preprocessing proce-
dure is shown in Fig. 1. We cropped the breast region out of all
DCE-MRI subtractions using the 3D masks. Then we performed nor-
malization by 1) clipping the image intensities to excluding extreme
values; 2) transforming the values into range of 0–1; 3) calculating the
overall mean and variance of intensity among all MRIs; and 4) sub-
tracting the mean value from all images and dividing them by variance
to be the inputs to our model. Figure 2 shows a typical intensity his-
togram change of one sample before and after the normalization.

3D Deep Learning Network Architecture
3D DenseNet19 was utilized as the infrastructure of our deep learning
model. The DenseNet is a special architecture of CNN, where shallow
layers are densely connected to deeper layers. Specifically, our 3D Den-
seNet had 37 layers, consisting of an initial stem structure, four densely
connected blocks, three transition layers, and finally a classification
layer for prediction. In the densely connected block, all the features of
the former layers were concatenated as input to the latter layer.

More details about our 3D deep learning network architecture
and training strategies are described in the online Appendix.

Malignancy Localization With Weakly Supervised
Convolutional Networks
We took advantage of a classification activation map (CAM)
method20 for the weakly supervised cancer localization. Particularly,
we connected the Dense Block_3 layer to an additional classification
layer to predict the whole image as malignancy or benign. The classi-
fier is started with a 1 × 1 × 1 convolutional layer that generated
two feature maps. Next, these two feature maps were input to a
global average pooling (GAP) or global max pooling (GMP) layer,
which can abstract the feature maps into two activation values. GAP
calculates the average value, whereas GMP captures the peak activa-
tion in each feature map. In this way the activation map generated
before the GP layer could be interpreted as a heatmap that presented
the likelihood of tumor lesions across spatial locations. High values
in the heatmap revealed a high probability of malignancy. As shown
in Fig. 3b, fired positions in the heatmaps indicate the presence of
tumor patterns. However, it could only detect the approximate loca-
tions of the cancers. To refine the localization result, we applied the
Dense Conditional Random Field (DenseCRF).21

TABLE 3. Distribution of the Collected MRI Breast
Dataset in This Study

Case type Training Validation Testing Subtotal

Malignant 720 105 206 1031

Benign 353 52 101 506

Subtotal 1073 157 307 1537

Training data are for training the network. Validation data are for
testing the model after each training step and tuning the hyper-
parameters. Testing data are for final performance evaluation.

TABLE 2. MRI Sequences Protocols

MR sequence
T1 W1
nonfat-suppressed DCE-MRI

Protocol t1_fl3d_tra_
nonFatSat

t1_fl3d_tra_
minte_fs_
dynal+6+c

Repetition time 8.70 msec 4.53 msec

Echo time 4.70 msec 1.66 msec

Matrix 896×896 384×384

Slice thickness 1.10 mm 1.10 mm

Bandwidth 350 Hz/Px 380 Hz/Px

Flip angle 20� 15�
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To this end, we were able to detect breast cancer in 3D MRI
under the setting of weakly supervised learning. The result was both
qualitatively and quantitatively evaluated.

Statistical Analysis
The statistical analyses were conducted using MatLab (https://www.
mathworks.com/). On testing data, the accuracy, sensitivity, and speci-
ficity for diagnosing the breast cancer cases were evaluated. The 95%
confidence intervals (CIs) on the metrics were determined using the
adjusted Wald method.22 We obtained the receiver operating character-
istic (ROC) curves using the sensitivity and specificity, and calculated

the areas under the ROC curves (AUCs) of the models.23 McNemar’s
test24 was used for comparing different models. P < 0.05 was consid-
ered to indicate statistical significance. The Dice similarity coefficient25

was used to evaluate the weakly supervised localization method.

Results
Performance of the CNN Models
We experimented with model configurations of GAP and
GMP. The network architectures were identical and their
only difference was the operation at the GP layer. Table 4
shows the classification results of the GAP model, the GMP
model, and model ensemble. We tested all six DCE-MRI
subtractions of one patient and took the average prediction as
the final result of one case. By taking 0.5 as the threshold for
malignancy prediction, the network conducting GAP obtained
an accuracy of 81.1% (95% CI: 76.3%, 85.1%) on the testing
subset. By replacing GAP with GMP, the network achieved an
accuracy of 81.8% (95% CI: 77.0%, 85.7%). Both networks
achieved over 80% accuracy, demonstrating the effectiveness of
3D DenseNets to diagnose breast cancer in MRI scans. Signifi-
cant differences on the testing accuracies between the two GP
settings were not observed (P = 0.839).

We also evaluated the sensitivity and specificity of the
results produced by the automatic methods. The network using
GMP reached a higher sensitivity than the GAP network (91.8%
vs. 86.4%, P < 0.05). On the other hand, the specificity of the
GMP model was lower than that of the GAP network (61.4%
vs. 70.3%, P < 0.05). This reflects that the GMP made the net-
work more sensitive to the breast cancer tumors, i.e., the GMP
network was more aggressive towards malignancy diagnosis.

FIGURE 1: Illustration of the framework for breast cancer classification using 3D DenseNet. The preprocessing steps to segment the
breast region are presented in the upper part. The convolutional network architecture is presented in the lower part. More details
about configurations of the layers are shown in the online Appendix.

FIGURE 2: Intensity histogram of sample data before and after
normalization.
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In addition, we aggregated the outputs of GAP and
GMP models by averaging the prediction probabilities of the
two DenseNets. As listed in the third row of Table 4, the
model ensemble result achieved a higher accuracy (83.7%,
95% CI: 79.1%, 87.4%) compared with the GAP model
(P = 0.039) and GMP model (0.146). The balance between
sensitivity and specificity was also improved, with a sensitivity
of 90.8% at specificity of 69.3%. The AUC of the model
ensemble reached 0.859.

For the weakly supervised localization task, one senior
radiologist manually annotated 36 correctly predicted cancer
samples in the testing data. We calculated the Dice similarity

coefficient between the weak labels generated by our method
and the human annotations of each subtraction image. The
proposed process demonstrated a mean Dice distance of
0.501 and a standard deviation of 0.274.

CNN Performance on Cases With Different
BI-RADS Categories
The results for malignancy cases with their BI-RADS catego-
ries are shown in Table 5. Our deep learning model reached
the highest malignancy sensitivity for cases of Category 5, while
it performed worse for the Category 3 cases (92.5% vs. 33.3%,

FIGURE 3: Visualization of (a) the MRI slices from three different samples, (b) the corresponding heatmap obtained from the GMP
model, (c) the corresponding refined weak label using DenseCRF, and (d) the manual annotation. Fired color indicates higher values
for the activations in (b). Red color indicates the annotation by model and human in (c) and (d). The Dice coefficients of each sample
were: 0.823, 0.683, and 0.091, respectively.

TABLE 4. Breast Cancer Diagnosis Performance of Deep Learning Networks and Radiologists

Network settings Accuracy Sensitivity Specificity AUC

3D DenseNet_GAP 81.1% (249/307)
[76.3%, 85.1%]

86.4% (178/206)
[81.0%, 90.5%]

70.3% (71/101)
[60.7%, 78.3%]

0.858

3D DenseNet_GMP 81.8% (251/307)
[77.0%, 85.7%]

91.8% (189/206)
[87.1%, 94.8%]

61.4% (62/101)
[51.6%, 70.3%]

0.856

Model Ensemble 83.7% (257/307)
[79.1%, 87.4%]

90.8% (187/206)
[86.0%, 94.1%]

69.3% (70/101)
[59.7%, 77.5%]

0.859

Radiologist 98.5%
(203/206)

59.4%
(60/101)

85.7%
(263/307)

NA

The accuracy, sensitivity, and specificity are in percentages, with raw data in the parentheses and 95% CIs in brackets. DenseNet =
densely connected neural network; GAP = global average pooling; GMP = global max pooling; AUC = area under the receiver operating
characteristic curve. BI-RADS 2 and 3 are regarded as benign and 4 and 5 are regarded as malignant diagnosed by radiologists.

1148 Volume 50, No. 4

Journal of Magnetic Resonance Imaging



P < 0.05). This indicates that BI-RADS 3 cases are difficult not
only for radiologists, but also for deep learning approaches.

Table 6 lists the statistics for benign cases of different BI-
RADS categories. Four benign cases were given a BI-RADS
Category 2 and our deep neural network correctly diagnosed
all of them. The benign sensitivity for Category 3 and 4 cases

were 75.0% and 71.0%, respectively. We observed that the
predicted benign probabilities for Category 3 cases were signifi-
cantly higher than those for Category 4 cases (0.66 � 0.29
vs. 0.47 � 0.31, P = 0.0012). Ten benign cases were mis-
classified Category 5 by the radiologists. Our model classified
these 10 cases with benign probabilities ranging from 0.01 to

TABLE 6. CNN Performance on Benign Testing Cases of Different BI-RADS Categories

BI-RADS category Category 2 Category 3 Category 4 Category 5

Number of cases 4 56 31 10

Number of CNN benign prediction 4 42 22 2

Sensitivity of CNN benign prediction 100% 75.0% 71.0% 20.0%

CNN = convolutional neural network.

TABLE 5. CNN Performance on Malignancy Testing Cases of Different BI-RADS Categories

BI-RADS category Category 2 Category 3 Category 4 Category 5

Number of cases 0 3 15 188

Number of CNN malignancy
prediction

NA 1 13 173

Sensitivity of CNN malignancy
prediction

NA 33.3% 86.7% 92.0%

CNN = convolutional neural network; NA = not applicable.

FIGURE 4: Typical hard sample for both deep learning model and radiologist. (a) Maximal intensity projection reconstruction.
(b) Apparent diffusion coefficient mapping. (c) Heatmap generated by our model. (d) Time–intensity curve.
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0.67, with a mean of 0.17 � 0.27. Two of the cases received a
benign probability of higher than 0.5 and were correctly diag-
nosed as benign.

Figure 4 shows a typical hard case of intraductal papil-
loma proved by surgery. Both radiologists and our model
identified it as cancer. From the maximal intensity projection
reconstruction (Fig. 4a), we can see the irregular shape, irreg-
ular margin, and heterogeneous internal enhancement tumor.
The time–intensity curve is washout (Fig. 4d). The maximum
enhancement is 235.3% within the first 2 minutes after injec-
tion. The apparent diffusion coefficient (ADC) mapping
(Fig. 4b) suggests water diffusion limited through the tumor
tissue (ADC value: 0.78 × 10-3 mm2/s). Our model showed
a high response to this tumor (Fig. 4c) and reported a malig-
nancy probability of 99.8%.

Table 6 compares the performances of CNN with radiolo-
gists. By taking BI-RADS 2 and 3 cases as benign, BI-RADS
4 and 5 cases as malignant, classified by radiologists, we observed
that the radiologists achieved 98.5% (203 out of 206) sensitivity,
59.4% (60 out of 101) specificity, and 85.7% (263 out of 307)
accuracy on the testing subset. CNN improved the specificity
while a lower cancer detection rate by nearly 10%. Although
CNN could miss more malignancies than the radiologists, it still
showed a comparable performance with the radiologists with
regard to accuracy.

Visualization of Weakly Supervised Localization
GMP methods generated more compact maps and focused
on the most discriminative regions.20 Hence, we retrieved the
heatmaps obtained from the GMP model and utilized
DenseCRF to refine the weak annotation. We selected three
samples with highest, moderate, and lowest Dice coefficient
and show the result in Fig. 3. Typical slices with breast cancer
(column (a)) of three cases (each row being one case), slices
overlaid by the heatmaps (column (b)), slices overlaid by
refined labels (column (c)), and slices overlaid by human
annotation (column (d)) are shown in Fig. 3. The three pres-
ented cases are malignancy correctly diagnosed by our model.

We can observe that the heatmaps generated from the
network are able to locate the cancer areas with higher activa-
tions than normal areas (fired color indicates higher activa-
tion). These outputs also present an intuitive interpretation
of what the models have learned from the training data. The
networks were automatically driven to focus on the lesion
areas, with the target of making accurate diagnoses. The
lesions were considered highly informative and the neuro-
activations corresponding to these lesion locations heavily
contributed to the final malignancy probability.

Discussion
In this study we directly processed high-dimensional data, i.e.,
3D volumetric images, by taking advantage of 3D DenseNet.
The layers in our network were densely connected, which

encourages reutilization of the features and helps to improve the
model performance.19 In clinical work, breast radiologists give
imaging reports by virtue of the image characteristics and their
own experience. This strongly depends on reader expertise.26,27

Moreover, the evaluation of radiologists could be affected by
physical fatigue, work environment changes, and many other fac-
tors. Regarding the low specificity and high sensitivity of the clin-
ical MRI report, our proposed method missed about 8% of
malignancies, while it lowered the overdiagnosing rate by nearly
10%. Therefore, it could serve as an assisting tool in the report
system to help raise specificity in cancer screening.

Compared with traditional methods, the main advan-
tage of deep learning models is its capability in extracting
highly representative features in a data-driven way.
Recently, the efficacy of deep neural networks has been
evaluated in breast cancer classification tasks.28–30 However,
these works either used a small-size dataset or needed man-
ual annotations on lesions during the training phase.
Directly localizing breast cancers in 3D radiology images with
only image-level supervision has not yet been extensively
explored. Our work included 1537 cases with pathology labels.
Since all the DCE-MRI subtractions are of the same modality,
each subtraction can be treated as a training sample by the
means of data augmentation. Hence, overall, 9222 sample scans
were used to conduct this study. Although using only the struc-
tural information in DCE-MRI, the large dataset as well as the
informative high-dimensional 3D data enabled greater perfor-
mance in our study.

The classification performance of all three models
suggested that both global and discriminative features in the
MR are essential for CNN to identify breast cancer. The
comparison between GAP, GMP, and ensemble models indi-
cated that discriminative features contribute the most. In
other words, the CNN can learn to focus on the most infor-
mative part when analyzing lesions. The results also showed
that MRI is highly sensitive for both radiologists and CNNs.
It shows that CNNs share some common characteristics with
radiologists in identifying breast cancer. In addition, tradi-
tionally difficult classified cases were hard for the CNNs as
well. The model was less accurate on cases of BI-RADS 3, 4,
and benign cases of BI-RADS 5.

Some limitations of this study must be addressed. First,
our dataset had a selective nature. Only MRIs with a solitary
lesion were included and cases where BPE is evident. We
deemed it confusing for the CNN when multiple lesions
appeared and asymmetric BPE can be mistaken for nonmass
enhancement. Hence, the CNN was trained on relatively easy
samples. Second, the network was not trained for identifying
specific abnormalities. The network should not only correctly
classify a patient as benign, but also distinguish a benign
lesion to be mass or mastitis. Consequently, the weakly super-
vised localization task could only detect the lesions with a
high malignancy probability. Lastly, we took each subtraction
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image as one sample, which meant only structural features
were considered in this study.

In conclusion, we developed a 3D deep learning model
for breast DCE-MRI cancer classification based on the state-
of-the-art densely connection structure. Our deep learning
networks demonstrated comparable accuracy with radiolo-
gists. The weakly supervised learning method showed promise
for localizing lesions in volumetric radiology images with only
image-level labels. Our image analyzing pipeline is fully auto-
matic, from breast MRI preprocessing to malignancy likeli-
hood prediction and cancer annotating. The pipeline has
potential as an assisting tool under clinical conditions.
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